
International Journal of Research in Management & Social Science   
 Volume 13, Issue 4(III) October - December 2025 
 

392 

ISSN  2322 - 0899 

PREDICTING FINANCIAL MARKET CRASHES USING A HYBRID FRAMEWORK OF REGIME 

SWITCHING, STOCHASTIC SIMULATION, AND ECONOPHYSICS 

Srinidi Subramaniam
1
, Ritarshi Roy

2
, Hiya Udeshi

3
 and Arti Hadap

4
  

1
Department of Cyber secirity, Mukesh Patel School of Technology Management & Engineering, SVKM's 

Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai- 400056, India 
2
 Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's 

Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai- 400056, India 
3
 Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & 

Engineering, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed-to-University, 

Mumbai-400056, India 

ABSTRACT 

This study proposes a hybrid modeling framework for predicting economic crashes by integrating Markov 

Regime Switching Models (MRSM), mean-field theory, and Monte Carlo simulations within the domain of 
econophysics. The integration of these three complementary methods allows for capturing both microscopic 

agent behavior and macroscopic regime transitions, making it highly effective for early detection of financial 

instability. To validate the robustness and adaptability of the approach, two case-specific models are 

constructed: one for the COVID-19 global economic crash (2020) and another for the Argentina 2001 
economic crisis. Each model is independently calibrated using historical stock market and macroeconomic 

data specific to its respective crisis. MRSM captures probabilistic transitions across latent regimes (bull, bear, 

and turbulent), while Monte Carlo simulations model agent-level interactions under varying market conditions. 
Mean-field theory accounts for collective behaviors and asymmetric buyer-seller dynamics that lead to critical 

instabilities. In both XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE cases, the models successfully identify 

regime transitions, critical temperature thresholds (Tc), and volatility clustering. The integration enables 

anticipatory insights into potential market breakdowns, allowing for pre-emptive action. Results highlight that 
well-timed financial interventions near Tc or regime shift boundaries significantly influence long- term market 

stability. This research demonstrates how combining statistical physics with econometric modeling enhances 

predictive accuracy and provides actionable tools for crisis forecasting and economic policymaking. 

Index Terms— Stock market crash prediction, COVID-19 economic crisis, Argentina 2001 crash, Markov 

Regime Switching Model, Monte Carlo simulation, mean-field theory, volatility clustering, econophysics, 

regime transitions 

I. INTRODUCTION 

1.1 Motivation and Background 

Forecasting market crashes is difficult in quantitative finance and economics. Examples such as the 2001 

Argentine crisis and the COVID Crisis in 2020, provide evidence of fundamental instabilities and sudden 
regime changes, which typical linear models fail to account for [2], [3]. 

Historically, analysing financial markets has been based on the assumption that markets are efficient, and 

returns are normally distributed. However, data illustrates that the probability distributions of market returns are 
heavy-tailed, demonstrate volatility clustering and undergo structural breaks due to the interactions of 

heterogeneous agents [4, 5, 8, 12]. Such collective behaviours often lead to nonlinear feedback loops, especially 

when agents become stressed during economic turmoil. Therefore, various interdisciplinary models 
from economics, stochastic simulation, and regime-switching economics, are together useful to remedy the 

inadequacies of traditional linear models. Econophysics employs ideas of critical phenomena and phase 

transitions to model disruption of the market [3], [7]. Monte Carlo simulations model financial market returns 

probabilistically and assesses the assumptions of uncertainty [1], [4]. Markov Regime Switching Models 
(MRSM) are directed towards observing latent states such as a bull, bear, or crisis phase, and estimating 

transition probabilities [2], [6].  

This paper reports the integration of different approaches, namely MRSM, Monte Carlo methods, and mean-
field theory to formulate a hybrid model which include agent-based dynamics and regime shifts. The model was 

applied to the COVID Crisis and the Argentine 2001 crisis accounting for how behavioural interactions produce 

instability and insights into early warning systems and policies. 
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1.2. Hurdles to Crash prediction 

Predicting financial crashes is a challenging task due to its complex granting systemic multi-causal and 

emergent nature. First, the financial system suffers from instability from shocks from the external economic 
situation, but also derives instability from endogenous behaviour which leads to non-linear interactions among 

various factors including herding, feedback, liquidity constraints, and sentiment shifts, all of which can 

potentially lead to prompt regime changes [3], [5], [12]. 

Standard linear time-series assumptions of stationarity, constant volatility, and normal distributed returns would 
break-down under extreme conditions where volatility clusters, asset classes become highly correlated, and 

return distributions exhibit fat tails and skewness [8],[10]. The net effect is that crashes are significantly 

understated as the rare and severe downturns (crashes) are hidden by regular volatility, leading to a false sense 
of stability. 

Although machine learning models are powerful predictors and can participant much in prediction, many 

machine learning methods tend to lack interpretability and are not designed for generalization across distinct 
market regimes. Most machine learning methods are susceptible to the problems of overfitting when even 

confronted with unforeseen events including sovereign debt defaults or world-wide pandemics [14]. 

On the other-hand econo-phyisics models and regime switching models including MRSM permit the detection 

of structural changes in a state system, whereby different latent latent states (i.e. crisis, recovery) are identified 
or coded, and the model would estimate change probabilities [2],[6]. The combination with Monte Carlo 

simulations derived from Mean-Field methods allow for the reconciliation of both micro behavioural and 

macro-dynamics in a single analysis [1],[4],[7]. 

In part, combining and making these methods work would be the availability of data, the calibration of the 

parameters and also an application to the real world. Nevertheless, it is an interesting hybrid approach for 

early-warning systems as well as other evidence informed policies. 

1.3. Role of Econophysics and Hybrid Modeling 
The limitations of traditional economic models are resulting in a utility playing more and more interest to 

interdisciplinary approaches, particularly those that borrow heavily from statistical mechanics to perform 

financial analysis. Econophysics utilizes elements of statistical mechanics, particularly in the analysis of non-
equilibrium systems, phase transitions, and the use of thermodynamic futures as well as offer a more substantive 

view of collective behaviour in addition to collective risk in regards to financial analysis [3], [4], [8]. 

Behaviours of investors in these markets can be seen as interacting particles in a complex system where 
micro-level actions result in macro-level phenomena. The parameters of Mean-Field Theory simplify systems of 

many-body interactions by isolating the average influence of all agents on an individual agent. Consequently, it 

is possible to describe and identify critical thresholds - like phase transitions in physics - where small shocks 

are capable of producing large systemic outcome like market crashes [7], [12]. Markov Regime Switching 
Models (MRSM) analyse the probabilistic structure of how to capture latent states of a market, for example, 

"stable," "volatile," or "crisis," and can estimate a transition away from or towards these states by relying on 

observable indicators [2], [6]. A dynamic edge is provided to this probabilistic structure in volatility to a point 
when uncertainty, or variance of, increases during episodes of volatility, and increased correlation to assets in a 

portfolio. Monte Carlo simulation methodology‘s offer variability in the measure of the future path or price of 

an asset through stochastic processes. By injecting random shocks over 1000's of iterations, Monte Carlo 
methods can assess the likelihood (or probability) of crashing when exposed to tail risks under systemic shocks 

where normal market behaviours are anticipated to be disrupted. This integration of MRSM, Mean- Field 

Theory, and Monte Carlo simulations provides a powerful hybrid framework that captures both the micro-level 

blend of agent behaviour and macro-level market regimes.  

When calibrated with real-world data, this improves the ability to predict crises and provides decision-support 

for early-warning triggers for crises. This framework has been used in this paper to explain the COVID-19 

market crash and the Argentinian 2001 crisis, providing clarity about the underlying mechanisms that govern 
regime shifts and financial contagion [9], [13], [14]. Financial markets are complex systems that are shaped by 

traders' behaviours that are influenced by other traders, economic signals, and policymakers. Thus, it is possible 

to see parallels in the aggregate behaviours of large numbers of traders in a financial market with those of other 

complex systems in the physical domain. For example, concepts such as phase transitions and correlated 
dynamics, help explain how the micro-decision of an individual trader will aggregate into macro-trends in 

the market. Like sociophysics, econophysics takes physical analogies and applies them in economic modelling, 

and thus, modelling in financial contexts using stochastic processes to analyse markets also draws upon 
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concepts from non- linear dynamics to capture the idea of asymmetry from buyer-seller interactions, aspects of 

price oscillations, and broader concepts such as market imbalances and fluctuations to contribute to the way that 

financial sectors model markets including potential for either agents or systemic changes to redress the market's 
structures. 

This study is deemed an isolated market (and omits all externalities such as potentially massive global capital 

flows or tourism patterns), to be more isolating of the trace of internalised market structures composed of trader 

behaviour, as being impacted by domestic governmental actions. 

II. THEORETICAL FRAMEWORK 

2.1 Overview of Statistical Physics in Finance 

The increasing complexity of financial markets has ushered in interdisciplinary approaches (such as 
econophysics), which utilizes techniques from statistical physics to model trader behaviour as interacting 

agents, similar to particles in physical systems [15]. This approach allows the use of concepts such as phase 

transitions, critical phenomena, and stochastic models to explain behaviours in finance during market crises. 

In their analogy, similarly to the spin states of a physical system, trader decisions are a function of interacting 

decisions which have emergent effects, such as volatility clustering and regime shifts [3], [4], which cannot be 

sufficiently modelled by traditional finance models. The concepts embodied by critical temperature and order-

disorder transitions also explain these observed market behaviours [1], [5]. 

Monte Carlo simulations can replicate trader interactions, using "temperature" to simulate the necessary 

movements that lead to real-world markets and volatility [20]. The use of Monte Carlo techniques in 

conjunction with Markov Regime Switching Models (MRSM), which can identify volatility regimes, and the 
associated transition probabilities, create a hybrid approach that can identify when early-stage market 

instabilities are emerging [2], [6], [8]. 

As supporting evidence, mean-field theory can also provide useful analytical opportunities to mathematically 

solve some mass-action trading behaviour, particularly when looking at how buyer-seller asymmetries or 
oscillations in price impact decisions [10], [11], [13]. Together, using these methods also offer an indication 

of when critical thresholds (such as Tc) and regime shifts indicative of potential financial market crashes, may 

be occurring. The framework is verified through case studies on the COVID-19 crash (2020) and Argentina's 
2001 crisis, both exhibiting features of critical behaviour and regime instability [17], [18]. This framework 

combines physics with economics providing deeper theoretical insights and practical ways of giving advance 

warning when markets become unstable. 

2.2 Markov Regime Switching Model (MRSM) 

The Markov Regime Switching Model (MRSM) provides a probabilistic approach to modelling sudden changes 

in market behaviour by permitting observable financial series to switch interchangeably between unobservable 

states, characterized by different return and volatility structures [18]. In practice, regimes are interpreted as bull, 
bear, or high turbulence states, with the transition matrix indicating the probability of moving to another state in 

the following periods. As the new observations arrive, the regime probabilities are updated in a recursive way, 

which gives a real-time measure of systemic stress that could be precursory to a crash event [17]. When 
discussed in an econophysics frame, the transitions between states have a nice analogue in terms of phase 

transitions in statistical physics, where an underlying ―order parameter" undergoes a critical change, resulting in 

a complete systemic collapse [15]. Here, we fit MRSMs separately for the COVID19 (2020) and Argentina 
(2001) datasets for estimating transitional intensity and regime duration specific to each case study. The 

estimates from the MRSM feed into the Monte Carlo and mean field parts of the hybrid model, ensuring 

alignment across micro and macro assessments. 

2.3 Monte Carlo Simulation for Market Dynamics 
Monte Carlo simulation is a vital computational device for reproducing the stochastic evolution of complex 

systems across a very broad range of parameter specifications [20]. In finance, simulating the randomness in 

trader interactions, shocks from external sources, and potentially liquidity constraints can produce fat-tailed 
return distributions and volatility clustering that existing closed-form models cannot model accurately [14]. In 

this process, every simulation starts from the regime probabilities calculated by the MRSM and moves forward 

in time by learning random shocks whose variance depends on the current state. The temperature like control 

parameter T influences the amount of behavioural noise: low T produces trading that is very close to 
equilibrium; that is, low T generates low order which does not produce wild price movements; high T produces 

disorder, which leads to chaotic and radical price changes [6], [8]. By aggregating and averaging thousands of 
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strategies, we will develop empirical distributions of critical thresholds, such as the time until failure (or crash) 

or the probability of breaching a preset drawdown threshold; we then compare these results to the real historical 

data from the COVID19 and Argentina crises. 

2.4 Mean-Field Theory and Trader Interaction Modeling 

Mean-field theory provides an analytically tractable approximation to the many bodies problem of interacting 

market participants because it substitutes the complex micro-level couplings of interactions with an average 

field that acts on all traders uniformly [10]. In the hybrid model, the mean field represents the average effect of 
buyer–seller imbalance and is dynamically updated by the mean and standard deviation of parameters inferred 

from the Monte Carlo layer of buyer-seller interactions. When the effective strength of the interactions exceeds 

a critical value, the system undergoes a symmetry-breaking transition rather like what is observed in physical 
spin lattices [11]. This transition can show up as persistent oscillations of price or strong drift in the direction of 

crash regime, depending on whether the dominant couplings are intragroup (buy–buy, sell–sell) or intergroup 

(buy–sell) [12][13]. By using mean- field predictions combined with MRSM probabilities of state, a critical 
temperature can be identified as a point at which the system is most vulnerable to shock, thus unifying the 

microscale effects of trader interaction with the macroscale dynamics of regime. 

III. METHODOLOGY 

This study develops a hybrid predictive modeling framework that integrates three components namely:- 

1. Markov Regime Switching Model(MRSM) 

2. Monte Carlo Simulations 

3. Mean-Field Theory 

MRSM is specifically used for detecting latent structural shifts in market behavior, Monte Carlo simulations for 

capturing stochastic fluctuations in return paths, Mean-Field theory for approximating the aggregate 

influence of interacting market participants. 

The modelling framework has been applied to two distinct crisis environments namely:- 
1. The Covid-19 global crash(2020) 

2. Argentina sovereign debt crisis(2001) 

Each model was constructed independently to ensure adaptability to the structural characteristics of the 
respective economic event. By combining latent regime dynamics, stochastic ncertainty, and emergent 

collective behaviour, the model can capture features such as volatility clustering, critical transitions, and crash 

probability spikes, all of which are characteristic of financial market crises [3], [5], [7], [13]. 

3.1 Mathematical Formulation of the Hybrid Crash Prediction Framework 

Our framework integrates Markov Regime Switching Models, Monte Carlo Simulations and Mean- Field 

theory to formalize crash prediction. Each of the above components focus on capturing different layers of 

complexity present in real-world market dynamics. Ranging from macroeconomic states to micro level agent 
behaviour. 

A. Markov Regime Switching Model (MRSM) 

For capturing hidden regime behavior, we start with a first order Markov Regime Switching Model in 
which the observed return series yt is driven by an unobserved discrete state variable 

St∈{1,2,…..,K},corresponding to market regimes such as bull, bear, or crisis. 

The observed return is given by:- 

yt=μSt+σStϵt , ϵt∼N(0,1) 

where μSt and σSt are the regime-dependent mean and standard deviation. The transition between regimes is 

governed by a probability matrix P, such that: 

P=[pij]=P(St=j∣St−1=i),i,j∈{1,…,K} 

This modelling framework supports the estimation of transition frequencies and the detection of regime shifts 

using the Expectation Maximization algorithm or Hamilton filtering techniques.[2][6] 
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B. Monte Carlo Simulation for Stochastic Return Paths 

 

Once regime probabilities are established from the MRSM, we simulate possible future return paths using 

Monte Carlo methods. For each regime St, the return at time t is sampled as: 

 

where i=1,…,N represents the ith simulation path. The simulations move forward by adding random shocks, 

where the size of these shocks depends on the current market regime. We find the crash probability by checking 
how many simulations drop below a set return level θ (usually −5%). 

This process is repeated across all time steps and calibrated against real-world volatility proxies such as the VIX 

or sovereign bond spreads. [1][4][10] 

C. Mean-Field Theory and Market Magnetization 

To represent collective trader actions, we use a mean-field approximation where agents are treated as binary 

decision-makers: buy (+1) or sell (−1). The aggregate sentiment is captured by the market magnetization: 

 

The probability that an agent buys at time t+1 is governed by a hyperbolic tangent function: 

 

where J is the interaction strength among agents, 

T is a noise parameter analogous to temperature in statistical physics. 

The system exhibits a critical threshold Tc, beyond which collective alignment collapses and volatility 
spikes.[7][12] 

3.2 Model Design for COVID-19 Economic Crash 

The framework exploring the COVID-19 crash targets U.S. equity markets, employing daily return data from 
the S&P 500 and VIX as principal metrics over the 2019–2023 timeframe. The subsequent steps outline the 

modeling procedure: 

A. Data Collection and Preprocessing 

The financial dataset was collected through the finance API, featuring adjusted S&P 500 close prices and 
daily VIX readings. Returns were derived using log-differences, standardized on a single timeline, and 

pre-processed to handle gaps. 

B. Regime Identification via Markov Switching 
To classify periods of relative market stability and high volatility we used a two-regime switching 

model(MRSM) to the return series. The model revealed a distinct regime transition around March 2020, 

aligning with the global recognition of COVID-19 as a pandemic. 

C. Monte Carlo Simulation of Returns 

Using Monte Carlo simulations, the model generated around 500 simulations of daily returns using statistical 

parameters derived from historical data. Each simulated path combines baseline volatility with stochastic 

fluctuations, where variance is governed by market uncertainty.Simulated returns were leveraged to construct a 
statistical distribution of stressed market behaviour. 

D. Crash Probability Estimation 

Crash probabilities were derived by identifying the proportion of simulated returns falling below a critical 
threshold (−5%). The probabilities were aligned with contemporaneous VIX values to test the model's 

sensitivity to shifts in market sentiment and risk dynamics. 
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E. Visualization and Diagnostic Evaluation 

The model outputs were evaluated across four parameters namely:- 

1. Actual vs Predicted returns 

2. Cumulative Returns 

3. Crash Probability VS VIX 

4. Crisis Regime Probabilities 

A focused analysis between February and June 2020 was conducted to evaluate the model‘s performance during 
the most volatile window of the pandemic. The model aligned well with historical return behavior and risk 

signals, reinforcing its suitability for shock-prone, high-frequency settings. 

 
Fig 1:- Flowchart of hybrid model (with Mean Field Theory) 

3.3 Model Design for Argentina Economic Crisis 
The Argentina-specific model targets the prolonged crisis period between 1999 and 2003, with a focus on 

sovereign default risk, capital flight, and macroeconomic deterioration. The modeling pipeline was adapted 

accordingly to reflect the characteristics of a slowly developing economic collapse. 

A. Data Acquisition and Indicator Construction 

Historical market data for the Buenos Aires Merval Index and VIX were collected from Yahoo Finance 

Moreover, sovereign debt statistics and currency exchange rates were retrieved from the Federal Reserve 

Economic Data (FRED). A Panic Index was derived by normalizing and aggregating these macroeconomic 
variables. 

B. Regime Detection via Hidden Markov Modeling 

To classify distinct phases of financial stress we trained a four state gaussian hidden Markov model (HMM) on 
the Panic index. A linear transition into crisis conditions beginning in mid-2001 was observed by the model 

with persistent high-risk regimes lasting for several months post-default. 

C. Monte Carlo Simulation and Deviation Analysis 
Using historical volatility estimates we simulated returns, which reflected more muted but sustained drawdown 

profile. These simulations were compared to actual market performance to assess the model‘s accuracy in 

identifying long-term divergence from baseline trends. 
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D. Crash Probability Estimation from Risk Proxies 

By computing the frequency of large negative returns, we estimated crash probabilities. These estimates were 

then compared to observed bond spreads, sovereign CDS levels, and foreign exchange volatility, serving as 
proxies for market distress in the absence of a domestic volatility index. 

E. Stress Regime Validation and Behavioral Consistency 

The regime classification results aligned well with known policy interventions, debt restructuring phases, and 

liquidity disruptions. The model captured the extended duration of the crisis, highlighting its effectiveness in 
modeling slow-building economic collapses, unlike the sharp onset observed during the COVID-19 event. 

Together, the two independently calibrated models demonstrate the flexibility of the proposed framework across 

varying market structures, time horizons, and crisis types. 

 
Fig 2:-Flowchart of Hybrid model(without Mean Field Theory) 

3.4 Behavioural Rules and Agent-Based Integration 

To capture the micro-level dynamics that often lead to large-scale market instability, the hybrid framework 
incorporates behavioural rules into the agent-based simulation layer. These rules reflect empirically grounded 

investor behaviours such as panic selling, herding, and sentiment-driven decision-making, all of which are 

well-documented contributors to financial contagion during periods of systemic stress [3][5][7].By integrating 
these decision- making processes within the simulation design, the model better captures volatility clustering, 

feedback loops, and crash phenomena. These behaviors emerge as endogenous risk drivers, which, alongside 

macro-level regime changes, construct a consistent multiscale predictive structure. 

A. Panic Selling under Extreme Losses 
Agents respond to sharp negative returns by increasing their probability of selling. This panic response is 

activated when the previous return Rt−1 falls below a critical threshold (typically −5%), mirroring empirical 

crash definitions. [1][4] 

 

Here, β∈[0.6,0.8] represents the panic intensity. This same threshold is used in the 

Monte Carlo simulation to define crash events, ensuring consistency between behaviour- driven dynamics and 

probabilistic forecasting. 

B. Herding Behaviour and Majority Imitation 
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Agents imitate the prevailing strategy within their local population to some extent, intensifying market trends 

and possibly inducing collective instability. The probability that an agent aligns with the majority behavior is 

formulated as: 

 

Where: 

 γ∈[0.6,1.0]is a herding sensitivity parameter, 

 Nmajority is the number of agents following the dominant action (buy or sell), 

 N is the total number of agents. 

These dynamic captures self-reinforcing mechanisms leading to bubbles or crashes, consistent with empirical 
observations of mimetic behaviour in crises [5], [12]. 

C. Sentiment Response to Volatility Indices 

Agent behaviour is also influenced by external fear signals such as the Volatility Index  (VIX) or a Composite 

Panic Index (in the case of Argentina). As these indices rise, the likelihood of agents selling increases 
proportionally: 

 

Where α∈[0.3,0.7] controls sensitivity. For emerging markets where a VIX proxy is absent, this role is filled 

by a normalized composite of sovereign bond spreads, CDS rates, and exchange rate volatility [10], [18]. 

D. Mean-Field Interaction and Market Magnetization 

The collective behaviour of all agents is aggregated into a market magnetization variable Mt, defined as: 

 

Here, si(t)=+1s for buy and −1 for sell. The probability of an agent buying at time t+1 is computed using the 

mean-field approximation: 

 

Where: 

 J is the interaction strength among agents, 

 T is a noise parameter, 

 A critical temperature Tc governs the system‘s transition from stable to unstable dynamics. 

This formulation is analogous to spin alignment in statistical physics and captures phase transitions triggered 
by behavioural asymmetries [7][11][13]. 

E. Integration into Simulation Architecture 

These behavioural rules are embedded within each Monte Carlo simulation iteration as follows: 

1. The regime state St is sampled using MRSM. 

2. Agents adjust their action probabilities based on panic, herding, and sentiment. 

3. The resulting agent decisions determine the aggregate return Rt. 

4. Market magnetization Mt is updated. 

5. Crash probabilities and regime transitions are re-evaluated. 



International Journal of Research in Management & Social Science   
 Volume 13, Issue 4(III) October - December 2025 
 

400 

ISSN  2322 - 0899 

This structure allows for emergent behaviour such as crash onset, regime persistence, and volatility clustering to 

arise endogenously from micro-level decisions, thus reinforcing macro-level regime predictions [9][14][20]. 

IV. RESULTS AND EVALUATION 
The performance of the proposed hybrid modelling framework is evaluated using monthly actual and predicted 

returns for two case studies: the COVID-19 crash in 2020 and the Argentina economic crisis from 2001 to 

2002. Each return prediction is generated through Monte Carlo simulations conditioned on regime probabilities 

derived from the Markov Regime Switching Model. Behavioural dynamics, modelled using mean-field 
approximations, shape the volatility structure of these return paths. 

The results demonstrate that the model effectively captures the magnitude and directional trends of financial 

market downturns during high-stress periods. While daily data provides higher granularity, monthly analysis 
remains sufficient to evaluate the system's ability to anticipate regime shifts and return deviations under crisis 

conditions. 

4.1 Actual vs Predicted Returns 
The tables (Table 1,Table 2) below present the actual vs predicted monthly returns for selected peak crisis 

periods. For the COVID-19 case (Table 1), S&P 500 index returns and simulation outputs are compared over 

the most volatile months of 2020. For the Argentina case (Table 2), Buenos Aires Merval Index returns are used 

during the lead-up to and fallout from the 2001 default. 

Table 1: Covid-19 (Actual vs Predicted Returns) 
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Table 2: Argentina (Actual vs Predicted Returns) 

 

4.2 Interpretation and Evaluation 

The model closely tracks the direction and magnitude of monthly return shifts in both crises. For COVID-19, it 
captures the sharp drop in March 2020 and the partial recovery by April, matching known market responses to 

pandemic escalation and stimulus announcements. In the Argentina case, it reflects the steady erosion of 

investor confidence during the months surrounding the sovereign default in December 2001. 

While RMSE or crash hit rate metrics are not computed due to the monthly resolution and limited sample size, 
the model demonstrates effective qualitative alignment, particularly in periods marked by high volatility and 

systemic stress. 

These outcomes validate the integration of: 
1. Regime classification (MRSM) for structural shifts, 

2. Stochastic return generation (Monte Carlo) for distributional realism, 

3. Behavioural feedback loops (mean-field) for capturing nonlinear dynamics during panic or herding. 

4.3 Crisis-Specific Observations 

 COVID-19 (2020): The model identifies the downturn onset as early as February and captures the bottom in 

March. The predicted April rebound, while slightly conservative, reflects the post-stimulus correction with 

high fidelity. This suggests the behavioural and volatility components are effectively absorbing market 
sentiment (as proxied by the VIX). 

 Argentina (2001–2002): The predictions follow the slow-developing crisis accurately. Declines from 

October through January align with IMF tensions, default risk pricing, and eventual bank freezes. Even in 
the absence of a standardized volatility index, the model's crash regime remains active and consistent with 

observed macroeconomic signals. 

4.4 Conclusion of Evaluation 

The monthly return alignment demonstrates that the hybrid model captures both fast- moving global shocks and 
prolonged sovereign crises. Despite limited temporal resolution, the model anticipates stress-induced return 

deviations and regime transitions with strong directional accuracy. 

These results support its potential for deployment in early-warning systems, even in data-constrained 
environments or markets without real-time fear indicators. 

The results indicate strong alignment between predicted and observed market behaviour. Regime classification 

matched closely with known historical phases, including the volatility spike during March 2020 and the 
extended sovereign distress in Argentina through late 2001 and early 2002. 

V. CASE STUDY 

To validate the predictive effectiveness of the proposed hybrid model integrating Markov Regime Switching 

Models (MRSM), Monte Carlo simulations, and mean-field theory, two real-world market crashes were 
analyzed through independently calibrated models: 

1. the COVID-19 global economic crash (2020), and 
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2. the Argentina economic collapse (2001). 

Each model was developed using case-specific financial and macroeconomic data. The models generated 

dynamic outputs such as regime probabilities, crash probabilities, and volatility behavior, providing insights 
into market responses under extreme stress. 

5.1 Case Study I: COVID-19 Economic Crash (2019–2023) 

A. Daily Market Returns Over Time 

As seen in Fig 3. Daily returns for a representative financial index between January 2019 and December 2023 
show a marked increase in volatility in early 2020, spikes in returns around March 2020 coincide with major 

pandemic-related disruptions such as nationwide lockdowns, travel bans, and stimulus announcements which 

highlights the market‘s sensitivity to abrupt global uncertainty.[17] 

 
Fig 3:- Market Returns: Actual vs Predicted 

B. Cumulative Return Comparison: Actual vs Predicted 
The cumulative returns predicted by the hybrid model tracks closely with actual returns during pre-crisis 

periods. However, a clear divergence arises in March 2020, indicating a structural break where the model 

initially underestimates the crash magnitude. This gap as seen in Fig 4. emphasizes the importance of adopting 
regime-aware and nonlinear approaches to account for extreme tail events. [13][18] 
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Fig 4:- Cumulative Performance Comparison 

C. Crash Probability Based on Volatility Index (VIX) 

Using VIX volatility as a measure of market fear, Monte Carlo simulations yield an evolving series of crash 

probability estimates. These probabilities surge in early 2020, peaking around the WHO pandemic 

announcement, and then taper off as policy interventions restore stability. This reflects the model‘s ability to 
react to sentiment-driven volatility changes [20]. 

D. Regime Probabilities Using Markov Model 

The MRSM analysis indicates an abrupt transition into a high-volatility regime beginningMarch 2020, with 
crisis regime probabilities exceeding 0.85. This elevated state as seen in Fig 5. persists for several weeks before 

transitioning back to a moderate regime by mid- 2020. The model captures this transition accurately, showing 

adaptability in classifying latent states during a fast-moving crisis. [9][18] 

 
Fig 5:- Crash Probability vs VIX(Fear Index) 

D. Regime Probabilities Using Markov Model 

The MRSM analysis (Fig 6) indicates an abrupt transition into a high-volatility regime beginningMarch 2020, 

with crisis regime probabilities exceeding 0.85. This elevated state persists for several weeks before 

transitioning back to a moderate regime by mid-2020. The model captures this transition accurately, showing 
adaptability in classifying latent states during a fast-moving crisis. [9][18] 
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Fig 6:- Markov Regime Switching: Crisis Probability 

5.1.1. Focused Crash Period: February–June 2020 

A. Daily Returns During Crisis Period 

Focusing on the February–June 2020 period, daily return plots illustrate extreme fluctuations, intraday reversals, 

and episodes of illiquidity. These movements reflect investor panic, rapid reallocation of capital, and the impact 
of global stimulus efforts. [17][19] 

B. Crash Probability vs VIX Levels 

Crash probability estimates generated by the model during this focused window strongly correlate with VIX 
peaks. The alignment confirms that market sentiment indicators enhance real-time predictive capacity, 

especially during uncertainty, supporting the inclusion of fear indices in hybrid frameworks. [14][20] 

C. Conclusion of the Covid-19 Economic Crash 
The results of the COVID-19 economic crash model demonstrate that the proposed integration of Monte Carlo 

simulations, mean-field theory, and Markov Regime Switching Models provides a highly effective and 

adaptable framework for crash prediction. The model, as seen in Fig 7 accurately identified the onset of the 

crisis in early 2020 through elevated crash probabilities, sharp regime shifts, and volatility clustering aligned 
with real-time market fear indicators such as the VIX. The Monte Carlo simulations captured the stochastic 

nature of trader behavior under panic, while the mean-field approach effectively modeled asymmetric market 

pressures during the peak crisis window. Furthermore, the Markov model reliably detected transitions between 
stable and unstable regimes, highlighting the importance of latent-state dynamics in market classification. 

Taken together, these results validate the robustness and sensitivity of the hybrid framework in capturing both 

the timing and intensity of systemic breakdowns. The model‘s ability to generalize across varying time scales 

and input structures suggests strong potential for deployment as an early warning tool in real-world financial 
risk monitoring systems. 
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Fig 7:- Improved Model: Actual vs Predicted S&P 500 Monthly Returns (COVID-19 Era) 

5.2 Case Study II: Argentina Economic Crisis (1999–2003) 

A. Daily Market Returns Over Time 

The Argentinian financial index has seen a significantly drawn-out decline with from 1999 to 2023 along with 

multiple short term volatility bursts. This decline reflects worsening fiscal conditions and investor withdrawal. 

It also leads to IMF tensions. The index has suffered the steepest decline in late 2001 followed by closing of 
banks and capital controls[17]. 

B. Cumulative Return Comparison: Actual vs Predicted 

In this case-study our model accurately predicts early trends but the predictions diverge from actual returns as 
Argentina approaches sovereign default in late 2001. In this case, the divergence in Fig 8. can be observed 

earlier compared to the COVID-19 case study. This brings to light the importance of accounting for slow 

building sovereign risk in emerging markets[13], [16]. 

 
Fig 8:- Nearest Simulated Path to Actual Market with Max Deviation 

C. Crash Probability Based on Country-Specific Risk Proxies 

Monte Carlo simulations use sovereign bonds spreads and CDC rates to represent volatility. A steady increment 

in the plausibility of crash through 2001 has been predicted in Fig 9. by these simulations resulting in it 
peaking just before the official debt default. This emphasizes the utility of customizing input variables for 

localized crises [18]. 
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Fig 9:- Average Crash Probability by VIX Level 

D. Regime Probabilities Using Markov Model 
The MRSM gives high regime probability to crisis states starting mid-2001. This does not come down into early 

2002. Compared to the COVID-19 case study the transition between the regimes has slower and more 

persistent. This reflects the consistency of the prolonged fiscal and political instability in Argentina. The Fig 10. 

shows the MRSM‘s flexibility in handling both fast and slow burn crises [9], [15]. 

 
Fig 10:- Regime Switching on Panic Index (Markov Model) 

5.2.1 Focused Crisis Period: July 2001 – March 2002 

A. Daily Returns During Crisis Period 

During a period of crisis, the returns show extreme fluctuations/volatility. This usually coincides with major 

events like bank withdrawal freezes, and violent protests. This behavior suggests that it is capable of detecting 
rapid sentiment swings in politically fragile markets[17]. 

B. Crash Probability vs Risk Indicators 

Although the VIX is not applicable to the Argentine market, crash probability estimates were benchmarked 
against bond spread surges and currency devaluation levels. The adaptability of this model is successfully 

confirmed across asset classes and regions.[14],[19]. 

C. Conclusion of the Argentina Economic Crash 

The efficacy of the proposed hybrid model is validated further due by the Argentina 2001 economic crisis. The 
model‘s effectiveness under conditions of drawn-out fiscal decline and sovereign risk is further cemented by 

the case study. The slow and gradual transition into a sustained crisis regime has been successfully predicted 

by the model. Further, the transition was evidences by the rising crash probabilities and rising regime 
classifications in advance if the country‘s formal default declaration. Contradictory to the COVID-19 

case which experienced an abrupt shock this collapse was experienced gradually over an extended period of 

time. This allowed the MRSM to highlight persistency in instability. Monte Carlo simulations, driven by 
sovereign bond spreads and credit risk indicators, reflected a steady build-up of crash probability, while the 
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mean-field component provided insights into the compounding effects of asymmetrical market behavior 

during capital flight. This case lacked a VIX or anything similar the model still adapted to indicators and 

constraints local to this case. This highlights its flexibility across emerging markets. Overall, based on the 
Argentina model we can positively state that the integration of regime detection, agent-based interaction 

dynamics, and probabilistic simulation offers a reliable structure for anticipating systemic breakdowns, even in 

slow-evolving crisis. This again underscores the flexibility and utility of the hybrid model in both global and 

region-specific economic environments. 

4.3 Summary and Case Comparison 

Using a combination of regime switching, volatility-triggered crash simulations, and mean-field-informed agent 

interactions both case studies validate the hybrid model‘s capacity to identify crises. COVID-19 represented a 
sudden collapse on the global level whereas the Argentina 20001 scenario presented us with a gradual localized 

default crisis. This model performs accurately in both. It underscores the models: 

 Fast transaction detection (during COVID-19 scenario) via fear index (VIX) and spikes in regimes. 

 Slow regime transitions in Argentina case using sovereign spread proxies. 

 Flexibility in adapting input variables and thresholds per market. 

 Consistency in mapping regime probability and volatility clustering 

These findings contribute towards supporting the hybrid model‘s relevance and ability for forecasting and early 
warning systems in a wide variety of financial environments. 

VI. COMPARATIVE ANALYSIS OF CASE STUDIES 

The adaptability and robustness of the hybrid model is highlighted by the fact that it can be applied to both the 

economic crises—COVID-19 (2020) and the Argentina sovereign default (2001) — and predict (in depth) both 
global and local financial shocks. Although the result of both events was ultimately market drawdowns, they 

differ in a lot of factors like origins, time scales, and underlying dynamics. This allowed for a substantial 

meaningful comparison of model behavior under varying conditions. 

A. Crisis Structure and Speed of Onset 

To understand to above points we will focus on the crisis structure and speed of onset for both the crises. In the 

COVID-19 situation an external shock driven by public health fears and rapid policy responses was seen. Due 
to this, an abrupt change in the market behavior occurred with regime transition probabilities peaking within 

days. In contrast to this, the Argentina crisis was developed over an extended period of time, and was driven by 

a lot of factors in this period like internal fiscal imbalances, political instability, and gradual investor 

withdrawal. The MRSM reflected this difference clearly: regime transitions in the COVID-19 model were sharp 
and abrupt whereas the in the Argentina model they were showing gradual inter-regime transition. 

B. Predictive Indicator Performance 

Now we will focus on the resources available to the model for it to forecast accurately. In the COVID-19 case, 
crash probabilities were highly correlated with the VIX, a globally recognized fear index. This enabled sharp 

detection of risk calculation in real time. In case of Argentina alternative proxies like sovereign bond spread and 

CDS level were had to be substituted due to lack of a proper fear index like VIX. Despite this, the model 

adapted to the restrictions and incorporated country-specific financial risk measures. , and the resulting crash 
probabilities aligned closely with known policy and economic breakdown events. This indicates the 

framework‘s flexibility in adapting to various forms of input data without loss of fidelity. 

C. Agent Dynamics and Market Behavior 
The mean-field component of the model provided meaningful insight into the behavioral aspects of both crises. 

In COVID-19, sudden market disorder was reflected through rapid divergence in buyer-seller asymmetry and 

amplified volatility. In the Argentina case, the development of the dynamics was slow but they were persistent 
over time. This means that both immediate and prolonged asymmetries can be captured through the same 

theoretical structure. The presence of persistent oscillations in both cases, albeit at different temporal 

frequencies, validates the role of collective interaction modelling in financial crash prediction. 

D. Model Accuracy and Generalization 
The timeframe of forecasting for both of these models were different. They were independently calibrated and 

validated against actual historical returns. The COVID-19 model captured short term market panic with high 

temporal precision. The Argentina model, on the other hand, was responsible for mapping out long-term trends 
(in this case distress trends).  
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Across both time frames the hybrid framework‘s accuracy was maintained to the highest degree. This 

confirmed that the integration of Markov state dynamics, stochastic simulation, and mean-field theory 

supports generalization across different asset classes, economic conditions, and regions. 

E. Policy Sensitivity and Early Warning Capacity 

We observed that both models demonstrated strong sensitivity to external interventions like government policy 

changes. . In COVID-19, the crash probability and regime indicators responded swiftly to fiscal and monetary 

stimulus measures. Responses in Argentina were more muted due to prolonged structural issues. This allows 
us to see the model‘s potential as an early warning system for policy makers allowing for better interventions 

which are well timed. 

VII. CONCLUSION 
This study shows that the combination of Markov Regime Switching Models (MRSM), Monte Carlo 

simulations, and mean-field theory provides a powerful and applicable framework for simulating and 

forecasting financial market crashes. By integrating latent regime classification, agent-based stochastic 
simulation, and collective interaction modelling, the presented approach is able to capture sudden and gradually 

emerging crises. 

The framework was tested with two different case studies: the COVID-19 economic downturn (2020) and the 

Argentina sovereign debt crisis (2001). In the COVID-19 case, the model reacted correctly to fast escalation of 
volatility and regime change, whereas in the Argentina case, it identified long-term systemic instability that had 

been developing over months. These outcomes are a testament that the model is able to function on various time 

horizons, macroeconomic environments, and asset classes. 

Crash probability forecasts produced with Monte Carlo techniques correlated highly with real-time risk gauges 

like the VIX in advanced economies and sovereign bond spreads in emerging economies. At the same time, 

the MRSM layer picked up on the time-varying transitions between normal and crisis regimes, and the 

mean-field layer exposed asymmetrical buyer-seller dynamics underpinning systemic stress. The three layers 
collectively generated a unified, data-driven explanation of financial instability. 

The hybrid model's responsiveness to various market settings and its responsiveness to policy actions and risk 

sentiment demonstrate its operational utility for financial analysts, regulatory authorities, and institutional risk 
managers. It can be used as an instantaneous early warning system, helping guide timely market. 

VIII. FUTURE SCOPE 

The findings of this research confirm the feasibility of a hybrid model framework integrating Markov Regime 
Switching Models, Monte Carlo simulations, and mean-field theory for predicting financial market crashes. 

Although the suggested methodology has exhibited robust empirical performance across a wide range of crisis 

settings, numerous avenues are left to be developed further and fine-tuned. 

One of the avenues for exploration is the incorporation of machine learning methods to advance model 
calibration and regime identification. Specifically, data-driven algorithmic approaches like recurrent neural 

networks, support vector machines, or hidden Markov models with adaptive parameters might augment the 

model's capacity to learn from high amounts of time-series data and identify early warning signs with increased 
accuracy. 

A second key extension entails the application of the framework in actual market situations. Translating the 

existing methodology to run on streaming data like intraday prices, volumes, and sentiment feeds would enable 
real-time monitoring of financial systems and early detection of instability. Such an application would be 

particularly useful for risk desks, regulatory agencies, and algorithmic trading venues. 

Furthermore, the model could be extended to understand cross-market and cross-asset relationships. Although 

the current study concentrates on individual equity markets, financial crises tend to have contagion effects 
across sectors, regions, and asset classes. Future research could involve network-based architectures or coupled 

regime models to study interdependencies and transmission channels in systems with multiple markets. 

Including behavioral dynamics more explicitly is also an attractive avenue. Trader psychology, including 
herding, selling based on fear, and speculative behavior, will often have a strong impact on market dynamics 

during periods of crisis. Adding behaviorally driven rules to the agent-based and mean-field levels will 

potentially make the model more realistic and explanatory. 
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Finally, additional intervention development of the analysis module can make the model more policy relevant. 

Expanding the framework to model various macroeconomic contingencies, fiscal reactions, and intervention 

policies can assist in the testing of crisis handling strategies prior to implementation. 

These extensions are designed to enhance the analytical sophistication and practical applicability of the model, 

moving its place as a sound tool for the assessment of systemic risk as well as for economic forecasting. 
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